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Abstract. We propose a theoretical model for the low-frequency noise observed in a quantum 
point conma (QPC) elecmswically defined in the 2D electron gas at a GaAs-AIGaAS interface. 
In such contacts elecuon scattering by soft impurity or boundary potentials coherently splits an 
incoming wave function between different msverse modes. Interference between these modes 
has been suggested to explainobserved non-linkties in the QPC conductance. In this study 
we invoke the same mechanism and the time-dependent curreni due to rofl dynamical impurity 
scattering in order m analyse the low-frequency (telegraph-like) noise which has been observed 
along with a non-linw conductance. For the simplified m e  of a channel with two extended 
(nurent carrying) modes, a simple analytical formula for the noise intensity is derived. GeneraUy 
we have found qualitative similarities between the noise and the square of the mmnductance. 
In comparison with the more traditional d.c. transport measurements we believe that noise 
measurements can provide additionalinfomation about the dynamical properties of QPCs. 

1. Introduction 

For several years problems related to electron transport through ballistic point contacts, 
shown in figure 1, have drawn a lot of attention from the solid state physics community. 
The most interesting feature of the so-called quantum point contacts (QPCs) is the non- 
linear character of theu current-voltage ( I -V)  characteristics. This non-linearity is usually 
explained within the framework of conductance quantization [l, 2, 3, 41 (for a review see 
[5] and references therein). According to this concept the QPC forms a qmntum channel 
that behaves as a wave guide for electrons, the number of transverse modes being dependent 
both on gate voltage V, and source-drain voltage K d .  Consequently, non-linear features 
of the I-v$d curve should be observed at driving voltages of the order of the mean spacing 
between the quantized transverse energy levels; i.e. for eV$d Z E p / N  (here EF is the 
Fermi energy and N the number of modes). For typical parameters this corresponds to 
v$d 1 mV. Nevertheless, non-linear structure in the response has been ohserved~[6, 71 
at much lower voltages of order 0.01 mV. One could understand such a behaviour by 
taking into account a resonant structure in the conduction steps (see e.g. 18, 9. 10, 111) 
due to scattering caused by abrupt variations in shape at the entrance and exit regions of 
the QPC. An explanation appropriate for QPCs with a smooth geometry, which probably 
corresponds to the experimental situation [6, 71, has been proposed in 1121. It is based 
upon the concept of coherent mode miring inside the contact; an electron wave entering the 
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gate electrode 

Figure 1. A quantum point ConIact is defined at the interface between the undoped AlGaAs 
spacer layer and GaAr by the split gate confinement technique. Noise is caused by the motion 
of impurities in the n-doped AlGaAs layer. 

The model introduced in [12] explains the qualitative structure in the measured I-  
V curves as well as their main quantitative characteristics. We beIieve that the above- 
mentioned mechanism is responsible for the features observed in [6] and [7]. 

Along with a non-linear oscillating con~bution to the I-V curve of QPCs, a telegraph- 
like low-frequency noise [ 151 has also been found. This kind of oscillating noise (as function 
of gate and source-drain voltages) is to be distinguished from the type of noise in 17.31 and 
[24]. In their case, noise is due to switching of the number of current carrying modes which 
in turn is caused by fluctuations of the Fermi level. Our aim here is to analyse the former 
type of oscillating noise in a QPC within the framework of the model introduced in [12]. 
Comparison of results on telegraph noise with available experimental data could support (or 
falsify) the above-mentioned model. 

The paper is organized as follows. In section 2 the model employed will be discussed. 
General analytical expressions for telegraph-like noise, as well as its relation to current, 
will be given in section 3. In the last section 4 we discuss main results and present our 
conclusions. 

gate electrode 

2. Model 

Following [12], we model our QPC-formed in a 2D electron gas by gate electrodes-as an 
adiabatically smooth channel [16] connecting two equilibrium reservoirs. We assume that 
the QPC contains two scatterers. The origin of these scattering centres, both taken to be 
static for the moment, can be the soft potentials formed by one or several of the impurity 
atoms in the n-doped AlGaAs layer (see figure 1) that are normally present because of 
doping. The gate electrodes are assumed to provide a hard-wall confining potential in the 
transverse direction, hence creating a channel whose width is fuahermore assumed to vary 

undoped spacer layer, AlGaAs 2DEG 
J 

c 
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smoothly in the longitudinal direction. The WKB approximation for the electron wave 
function is therefore applicable. One finds [16] 

where 

k",l@, x )  = kFJE - E . . I ( X )  - ug(x)  - us@). (3) 

Here E EEF is the total energy of the electron-& being the Fermi energy in the leads 
at zero bias voltage, V9d = &while kF = ( 2 m E ~ f i ~ ) ' ' ~  is the Fermi wave vector and 
kn.,l ( E ,  x )  the longitudinal wave vector along the channel. The transverse part of the wave 
function, &(y), depends parametrically on the longitudinal coordinate x ;  the corresponding 
'transverse' energy eigenvalue is &,,,I and is measured in units of the Fermi energy EF. 
Hence 

where d(x)  is the coordinate-dependent width of the channel. The distribution of the 
electrostatic poten& caused by the applied source-drain voltage is affected by all charges 
within the contact region; it is described by the dimensionless parameters U = eVsd /2E~ 
and s ( x )  which appear in the combination us(x )  in (3). In order to match the Fermi levels 
in the leads we must obviously require that s(=!z~o) = f l .  The distribution along the 
channel for the gate voltage modelled by the dimensionless parameter U is described by the 
dimensionless function g(x) .  The plus sign (+) in (2) corresponds to transmission from 
the left to the right reservoir, while a minus sign (-) corresponds to transmission in the 
opposite direction. Without losing anything essential, we simplify our model by letting 
g(x)  = 1, U = 0 in expression (3) for the WKB wave functions. 

The interference effects of interest to us are due to coherent scattering by two scatterers. 
The first one splits an incoming mode into several other modes which then propagate 
independently. Making use of the unitarity of the scattering matrix one can show 112, 171 
that such a splitting.does not change the current at all in the absence of backscattering (if 
the potential is soft enough). The unitarity condition is simply a statement of conservation 
of probability: total incoming flux must equal total outgoing flux. The second scatterer 
makes an additional coherent mode mixing that leads to an interference pattern in the total 
transmission (or reflection) coefficient, and in the current. 

Let us assume that an electron enters from the left, is transmitted after scattering against 
the left impurity (L), propagates through the contact, passes the right impurity @) after a 
second scattering event, and finally escapes the channel on the right-hand side. To describe 
the coherent splitting of the WKB wave function (1) we introduce-following [12]-for 
each scatterer a unitary (2N x 2.N) scattering matrix, 

such that 
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The ( N  x N) submatrices F* and ;* define the reflection from, and the hansmission through, 
the scatterer of the components of the incident wave function. The plus/minus component 
9; refers to the incident wave coming from the lefthight reservoir, while the plus/minus 
component *& refers to the outgoing wave from the scatterer propagating to the righaeft. 
The elechon propagation righaeft between the scattering events is described by diagonal 
phase gain matrices 0, 

J P Hessling et a1 

fi* ' I  = exp [zt iuj(~)]  (7) 

q ( E )  = dr 'k j . j (E,  x ' )  (8) 

where 

X' 

is the phase gained by the j th mode between scatterers R and L. 
The general expression for the current is 1121 

where 6nF is the difference between the Fermi-Dirac distribution functions in the reservoirs, 
and f*(E) the total transfer matrix (for transfer from left to right) for a particle with energy 
E, so that Ykt = f'Y:. To lowest order, ?+ = g U + g .  Making use of (5) and (7). one 
can show I121 that the total current can be expressed as a sum of two parts: I = -I- lint. 
The first part 

originates from diagonal pats  of the matrices k 
contribution, 

Gig and i qc'. The second 

where cjjk uj -uk, contains all interference effects. In the absence of backscattering (10) 
reduces to the usual expression for the current through a ballistic constriction, which exhibits 
the well known conductance quantization with gate voltage 111. lint is the contribution from 
interference between different modes. The expressions (10) and (11) that give the total 
current were analysed in [12]. They are the staaing points for calculating low-frequency 
noise. 

3. Low-frequency noise 

3.1. General consideration 

One can imagine several mechanisms which lead to low-frequency noise-external, such as 
low-frequency fluctuations of gate and source-drain voltages, and intemal, such as spatial 
rearmgements of the scattering potentials. In the present study we consider the latter 
mechanism, which we believe to be the simplest one. 

It i s  well known that there is some disorder in the vicinity of small devices, even if they 
are of high quality. In any disordered system defects with intemal degrees of freedom are 
present. Interactions with a thermal bath can induce transitions between the corresponding 
quantum mechanical states (see [18] for a review). Usually, such defects switch between two 
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states, leading to a telegraph-lie noise pattern. Dynamical defects of this kind have been 
observed in metal point contacts and tunnel junctions by several authors (see, e.g. [25-301 
and have been called 'elementary fluctuators', or EFs for brevity. Typically, a Lorentzian 
frequency dependence of noise is observed if one EF is responsible for the fluctuations, 
while in the case of several activated EFs usually a l/f dependence (often called flicker 
noise) is found [24-301. The number of activated EFs increases with temperature, so one 
can actually in some cases see the crossover from Lorentzian to l/f-like noise when the 
temperature is raised [24]. In the present study we focus on noise from a single EF. Thus, 
for our results to be applicable, bandwidth-limited noise should be observed. 

The microscopic structure of the EFs is not completely clear. One of the possible 
sources of two-state defects is disorder-induced soft atomic vibrations. For low excitation 
energies the vibrations are strongly anhmonic and can be described as an atom or group 
of atoms moving in an effective double-well potential. Such entities are known as 131,321 
two-level tunnelling systems (TLS). They are responsible for the low-temperature propehes 
of glassy materials. The generalization of the TLS model for higher ex citation^ energies has 
been worked out in [33]. Dynamical defects produce elastic (or electric) fields, slowly 
varying in time. Conduction electrons are then scattered by these fields. Another possible 
origin of fluctuations in the scattering potential is electron hopping between adjacent sites in 
the doped region of the device. The motion of the EFs leads to a variation of the scattering 
potential in the 2DEG region. 

A quantitative theory is not yet completely worked out for either of the two mechanisms 
mentioned above. In order to describe the main physical picture we use a simplified model: 
i.e. we assume that one of the scatterers (the left one, say) will maintain its static character, 
while the other one (right) is allowed to hop between two different spatial positions. The 
hopping scatterer will from now on be denoted~the elementary Buctuator (EF). Its spatial 
position X R  is a random quantity, which we describe as 

(12) 
I 
2 

XR(t) = x; - -F(t ) .  

Here I is the hopping distance; for simplicity, the transverse coordinate has been neglected, 
leading to an effectively one-dimensional description. The random quantity $(t)  is jumping 
between the two values f l  at random times, thus describing a telegraph-lie process. 

The hopping is induced by an interaction with a'themal bath. The transition kite r+ 
from the state e = +1 to = -1 and the reverse'rate r- are determined by the nature 
of hopping and by the interaction between the EF and the thermal bath.-From the detailed 
balance principle we have 

r-/r+ =exp(-Afk~T) (13) ' 
where T is the temperature, and A the energy difference between the states of the EF. 
Consequently, at high enough temperatures (kBT >> A) the hopping rates are almost equal, 
while at low temperatures there will be a significant difference between the two. The 
dependence of r = r+ + r- on A and T is determined by the hopping mechanism (see the 
discussion in [18] and [24]). If the transitions are due to quantum mechanical tunnellhg, 
r cx Ak where k = 3 for EF-phonon interaction and k = 1 for~EF4ectron interaction. If 
transitions are induced by activation, on the other hand, r c( exp(-W/kBT) wbere W is 
some activation energy 1181. We assume the EF to be unaffected by the applied sourcedrain 
voltage as well & the gate voltage [19]. Thus our model does not apply to the mechanically 
controllable break junctions studied in [21]. For normal semiconductor junctions though, 
the electric fields generated by these voltages in a remote EF (see figure 1) are usually 
much less than the EF's internal field. Hence r can be considered to be independent of 
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these voItages [ZO]. We assume that the only effect of the hops made by the scatterer is a 
variation in the phases, uj, gained by conducting modes. As has been shown in [I21 the 
oscillating part of the current is sensitive to the phase of the modes. Therefore, we expect 
that the simple model we use contains the most important mechanism for the influence on 
the current from the EF. 

J P Hessiing et a1 

3.2. Ancrlytical expression for noise intensify 

Noise is usually characterized by the current-current correlation function 

S ( d  = + r ) I ( t ) ) ,  - (10)): (14) 
or by its Fourier transform S(o) with respect to time r .  The symbol (. . means average 
over time t which i s  (under stationary conditions) just the same as an average over the 
random process c(t)  (ergodicity). Strictly speaking, the current I is an operator, and 
the procedure also has to include a quantum mechanical average. However, here we are 
interested in long-time correlations while the so-called quantum noise [34] 

& + 7)h), - + r))g(f(f))g 
(subscript q stands for a quantum mechanical average) decays at very short times z. 
Consequently, to study flicker noise one can replace current operators by their quantum 
mechanical averages. 

Because the diagonal part of the current is time independent, only the interference part 
enters the expression for noise. Making use of equation (11) for fint we obtain the following 
form of the current-current correlation function: 

where 

(16) 
M j k f m  = R(E)jkL(E)yR(E’)imL(E’),I 

i~”(t.E‘)+i.j~(t+r.E))I - (eicd~,B’))t (eiujt(r,E)) t. 
Qjk im = (e 

Assuming that the longitudinal wave vector kj.ll varies slowly as a function of position X R  

in the channel, one can approximate the phase as 

The superscript 0 indicates that the phase, (S), should be evaluated for x i .  We then arrive 
at the following approximate form of the function (16): 

Qjjt.,,, eiIu%E)+u~(E’)l~ [wjk(E), wim(E’)Ir] (18) 
where urji(E) = w,(E) - wi(E),  and 

Note that the function K ( x ,  ylr) is known [36] as the generatingfunction for the random 
process t ( f ) .  After a straightforward analysis, we get from equation (A7) (see appendix A) 
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Thus we find that the quantity g [wjk(E), wlm(E‘)lz] in equation (18) can be factorized 
into functions of E and E‘. Furthermore, by their mere construction the matrices k and e 
are Hermitian. Hence one cm reduce the double sum as follows: 

Taking the Fourier transform with respect to T we find the noise spectrum to be a Lorentzian 
since the cucrent--Current correlation function is exponentially decreasing in time. 

Collecting the partial results above, we obtain a general expression for the noise of the 
form 

where 

The expression (22) is a product of three factors. The first one, cosh”(A/&T), makes 
it clear that a telegraph-like noise can only appear if the EF can hop due to interactions 
with a thermal bath. The typical excitation energy is of order kBT. If A >> ~ B T  the EF 
cannot be excited and will remain in its lowest-energy state forever. The second factor is 
a simple Lorentzian function with characteristic width r. The third factor in (22), h2, is 
equal to (J:t - 2;J2/4 where superscripts i correspond to the values f l  of the random 
process ((0.  As a result, equation (22) can be expressed as 

For the particular case when there are only two possible values of the interference current 
one can derive this expression directly !?om the Master equation without using the generating 
function. We still keep the above derivation though because it allows for a straightforward 
generalization to the case-of several EFs. 

The, quantity A contains the same parameters as expression (11) for the interference 
part of the current. I t~is  therefore of interest to see whether or not the quantity A can be 
relaw, to measured (average) current-vottage characteristics. This is the subject of the next 
section. 

3.3. Noise and interference current 

Since the interference pari of the current (11) is fluctuating, &e average current will be the 
most easily measured quantity. Provided RjkLkj is r d ,  we only have to cdculate Re(eia;k(‘)) 
to find this average. Using the approximation for the phase (17), and the definition of 
K ( x ,  ylt) in (19), we may express the average of the phase factor in terms of K as follows: 

(29 (eiu;dt)), = eir$ (eiw;&(r)) - - eiUiK(wjk,010). 
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From (A6) (see appendix A) and (13) we then immediately obtain the average current, 

J P Hessling et  01 

+ tanh(A /2kB T) sin@$ ( E ) )  sin(wjk ( E ) ) ] .  

Besides the current often the transconductance, here defined as 

is measured. Only the interference part of the current has been included because far from 
the conduction steps the diagonal part is practically independent of the gate voltage. 

Further, from now on we restrict ourselves to only consider straight channels. This 
simplification allows for a simple estimate of the phase differences wjk(E~) and u;(EF) 

(Lj.11 E kj.li(u = O)/kF), 

provided we are far from the thresholds where the number of conducting modes changes. 
Remember that L = X L  - x i  is the distance between the scatterers and I the hopping distance 
of the EF. The period of oscillation in noise as a function of the dimensionless gate voltage 
U will be 

Since typically kF1 < 1, we find it sufficient to expand all results to lowest order in 
wjk. This upper bound of kF1 calls for a digression. The typical displacement 1 of an 
EF in the course of thermal-bath-induced fluctuations depends strongly on the microscopic 
nature of the EF. If the EF is produced by structural disorder in the vicinity of the channel, 
one can expect E to be of the order of an interatomic distance, and kF1 << 1. If the EF 
originates from electron hopping in the doped region of the structure, it is reasonable to 
expect that 1 is of the order of the average distance between the impurities in the doped 
region. In this case the product kFI can be as large as 1-10 depending on size and shape of 
the structure. Another point to note is that a mechanical displacement of the scatterer is not 
the only reason for variations in the scattering phase kF1. Rearrangements in an extended 
defect containing several atoms can also cause variations in the scattering phase of order 
unity. Our phenomenological model does not aliow for explicit calculations of the scattering 
phase, so we keep the simplest description of the mechanical displacement of the scatterer 
and consider the product kF1 to be of order one. 

3.3.1. Two propagating modes. To compare noise and current, we first consider a simple 
case for which we do not explicitly have to calculate RjkLkj: when the QPC only allows 
for two propagating modes, noise can for low temperatures (T << A / k s ,  TF) and low 
source-drain voltages v& be directly related to the current, 

(Ii"t(t)>i = Imax cos [&(EF) - wjk(E)] (30) 
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I- = 2goV,dRiz(E~)Lzi(E~) (33) 

where go = 2e2/h is the unit of conductance. I,, is the maximum value of the interference 
current with respect to variations in external parameters. 

Qualitative conclusions about expressions (30>-(33) will be drawn in section 4. 

3.3.2. Many propagating modes. In the case when the& are more &an two modes 
propagating through the quantum point contact, one has to solve for the product 
R j k ( E ) L y ( E )  of the scattering rates between different modes. Generally the solution to the 
scattering problem is rather involved and since there are many unknown parameters we will 
in this section only make estimates of the order of magnitude of these scattering rates. It 
will turn out that the largest conhibution, within our approximations, comes from scattering 
between the propagating modes with the two lowest mode indices. Thus we can actually 
apply the two-mode results (30H33) in section (3.3.1) even when there are more than two 
current carrying modes. However, the approximations adopted below are less accurate the 
more modes-there are. see numerical estimates in table 1. 

Table 1. Square of intermode scattering rates, ' / j k ( E F ) .  between modes j and k at the Fermi 
energy and for .?em gate voltage. The parameter N is the total number of propagating modes 
and the channel width was chosen so as to have the conmt biased at the centre of a plateau in 
conductance quantization. To have a nonrero vahe of ?;E we must have odd values of j i k. 
It is clearly seen that increasing the total number of modes N andlor decreasing kpa and kpb 
makes the differences smaller. 

N kFa kFb Mode j Modek Tjk(EF)/TIz(EF) 

5 IO 20 1 2 I 
2 3 2 x 10-2 
3 4 a 10-3 
4 5 3 10-5 
I 4 4 10-7 
2 5 s 10-13 

2 3 3 10-3 
3 4 9 10-5 
4 5 2 x 10-9 
1 4 1 x 10-11 
2 5 2 x 10-21 

2 3 6 x 
3 4 I x lo-' 
4 5 3 x 10-2 
5 6 4 x 10-2 
6 7 1 x 10-2 
7 8 8 x 

20 40 1 2 I 

IO IO 20 I 2 1 

8 9 I 10-3 
9 10 I 10-4 
1 4 9 10-4 
2 5 4 x 10-6 
3 6 2 x 10-~ 
etc 
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The quantity R,k(E)Lkj(E) is the product of the two scattering probabilities for 
scattering from mode j to k by the left scatterer and the analogous probability-but time 
reversed and with exchanged mode indices-for the right scatterer. Since we have restricted 
our channel to be straight, Rjk(E) = Ljk(E). To simplify the calculations we assume that 
the only screening of the impurity potential that exists originates from electrons within the 
gate electrode. This screening can approximately be described by a proper image charge. 
If the impurity and image charges are separated from the 2DEG by distances a and b, 
respectively, the effective potential is 

where r is the in-plane coordinate, while Ao contains physical constants. 
The scattering probability can be calculated from the Golden Rule, 

(35) 

where i and f denote the initial and final states. 
For r >> max ( U ,  b), we find that V ( r )  K l / r 3 .  The potential (34) is hence short ranged, 

and its influence may be ignored for large r .  In the opposite limit of small values of r ,  
we get V ( r )  = Ao(l/a - l/b)[l - (r/c)'I, where c = ab/J(aZ +ab + b2)/2. The typical 
range of V ( r )  is c. 

Due to the presence of the spacer layer (see figure l), the width of the channel will 
most likely be much smaller than the distances a and b. In this case the impurity potential 
can be considered as being constant in the transverse direction. The matrix element in (35) 
will then simply be proportional to the overlap between the transverse p m  of the wave 
functions. This overlap is non-zero only between modes of different parity (i.e. when k i  j 
is an odd number). The matrix element can consequently be written as 

2x 
Lkj(E) ~ I ( ~ I V ( ~ , Y ) I ~ ) I ' ~ ( E ~ - E I )  

where n ( n )  = [I - (-1)"]/2 equals zero for even n and one for odd n. The function 
V&) is the Fourier transform of the potential along the channel. To evaluate V&) we 
must solve the integral 

Here we have introduced branch cuts at -iw + -in and at in + io0 and transformed 
the integral by means of complex contour integration. The distances a and b are large due 
to the presumed low intermode scattering; in the last step we thus are allowed to assume 
k ~ a ,  kFb >> 1. A lower bound of these parameters is given by kFc, where c is the spacer 
layer thickness (see figure 1). It can be estimated from [5] and 1231 kF = 1.6 x lo6 cm-' 
and c = 42 nm implies kFc = 6.7. The reason for having a spacer in the structure (see 
figure 1) is in fact to reduce impurity scattering so the scattering must be very soft. Indeed, 
in [7] the off-diagonal contribution (m our model due to intermode scattering) to the current 
was found to be a fraction 0(10-3) of the diagonal pan of the current. 
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(k~/ka)2+(kn/b)2=E/Ep 
Figure 2. IUusVation (taken tiom [22] and [Z]) of passible scattering events for the case of 
four propagating modes far from threshold where the number of propagating modes changes. 
The signs of ki, kll and 411 are chosen for convenience and clarity. Because of the expanerdid 
dependence on q l p  and q b  and the high value of h a  and ku, scattering caSe 1 gives a much 
larger canttibution to q k  than cases 2, 3 and 4. (See also table 1.) 

The energy-dependent quantity determining the strength of the different intermode 
scattering rates will be 

Of crucial importance here is the exponential dependence on the longitudinal component 
of the transferred momentum, 411 = Ik,.ll - kj.ilI. This result agrees with findings by Price 
[35]. Along with the fact that kFa, kFb >> 1, it implies that the major contribution comes 
from the scattering event with the lowest value of 411. If the total number of propagating 
modes is not very high, we see from figure 2 that the scattering from mode number one 
into mode number two gives the lowest value of qu. As an approximation we may put all 
other scattering amplitudes to zero. Hence, even in the more general case of more than two 
modes we should observe a similar relation between noise and current as in the two-mode 
case (see section 3.3.1) above. For completeness, numerical values of ?;.k(EF)/Tlz(EF) are 
given in table 1 for different values of ( j ,  k) and for a particular set of physical parameters. 

4. Discussion and conclusions 

Let us start the discussion by reviewing the results for a QPC with two current carrying 
modes, equations (30x33). In this case we predict that the period of noise oscillations as 
a function of external parameters should be half the period of oscillations in the current. 
Verification of this statement is important in order to confirm (or falsify) our model. 
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In the general case when there is no restriction on the number of conducting modes we 
conclude the following. 

(i) By qualitatively estimating the intermode scattering rates we found that the major 
contribution to noise and interference current comes from scattering between modes one 
and two. However, decreasing the distance to the impurities and/or increasing the number 
of conducting modes makes this conclusion less accurate. The many-mode solution could 
thus be mapped on the result for two conducting modes. In particular, noise and square of 
transconductance should oscillate with the same frequency and phase, as functions of gate 
voltage. 

(ii) The dependence on temperature of the telegraph noise is determined by the factor 

cosh-2(A/kBT). 

Comparing with experiments one can determine the interlevel spacing, A ,  of the elementary 
fluctuator 0. This would help to identify the nature of the EF. 

(iii) The width, r, of the Lorentzian that describes the frequency dependence of the 
noise is also a function of temperature. In fact it reflects the most important dynamical 
property of the EF because the temperature dependence is different for quantum mechanical 
tunnelling and activation (see section 3.1). 

(iv) The main feature of our model is that variations in external parameters (such as 
V,, &.d) are assumed to only affect the phase functions u,(E) (see equation (8)). The 
oscillatory behaviour of the noise and the square of derivatives of the current (with respect 
to any external parameter) should then be qualitatively similar. 

(v) The assumed nature of the EF causes the additional phase wij (a: I )  due to its 
fluctuating position to be small. To lowest order, noise will have a quadratic dependence 
on the hopping distance 1. Thus if there are several EFs, the EF with the largest hopping 
distance will give the largest contribution to noise. 

Finally, we would like to stress that, in spite of the idealized character of the adopted 
model, our conclusions seem rather general. Indeed, any kind of time fluctuation in the 
scattering phase shift by any scatterer should lead to a similar behaviour. In that case the 
parameter wij will have a different meaning and could  in^ principle be of order unity. 
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Appendix. Derivation of the generating function K ( z ,  yl~) 

In order to evaluate K ( x ,  y lr)  let us analyse the Master equation for the’ conditional 
probability e(?, t‘lh, t )  of finding the value 5 = g’ at the time t’ under the condition 
g ( t )  = 6. It reads (cf. [36]) 

with initial condition Q(6’. tie, t )  = ~ 8 p . ~ .  Taking into account the sum rule 

&(+I, ?’IC. t )  + Q(-1. t’E, t )  = 1 
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we find the following solution to (Al): 
1 

t’15, t) = zr - cyr+ - r-) + t’e-rlf’-il (rs +l.E - rs-I.E +- r+ - r-)]. ( ~ 2 )  

The expectation values of all odd and even powers of c( t )  and its products can now 
readily be evaluated (since f is only allowed to assume the values f l ) .  One finds 

(A3) 

The function Cl(t’ - f l )  defined in equation (A3) can be calculated using its definition, 
which can be reexpressed as 

c(t‘, t )  = t’tQ(t’, t’lt, OPE, f). (A4) 

(t”(t’)t2”(t)) = 1 

(t )t ( t ) )  = (to)) = (r- - r+vr 
(p+’(f’)p+’(f)) = ( t ( f ’ )$( t ) )  = C((t’ - t i ) .  

2k I 2n+l 

(.+*I 

PO, t )  is here the one-event probability of finding the value < at time t .  We find 

I. ( A 3  ~ ( t ‘ ,  t )  = - [(r+ - r-12 +4r+r-e-rlr’-tl 

Expanding the exponential in the generating function (19) and making use of the expectation 
values (A3), together with (A5) we obtain 

1 
r2 

For the difference function B(x, ylr) defined in (19) we get 

Here we have used the relation (13) between r+ and r-. 
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