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Abstract. 'We propose 2 theoretical model for the low-frequency noise observed in a quantum
point contact {QPC) electrostatically defined in the 2D electron gas at a GaAs-AlGaAs interface,
In such contacts electron scattering by soft imparity or boundary potentials coherently splits an
incoming wave function between different transverse modes. Interference between these modes
has been suggested to explain observed non-linearities in the QPC conductance. In this study
we invoke the same mechanism and the time-dependent current due to soft dynamical impurity
scattering in order to analyse the low-frequency (telegraph-like) noise which has been observed
along with a non-linear conductance. For the simplified case of a channel with two extended
(current carrying) modes, a simple analytical formuia for the noise intensity is derived. Generally
we have found qualitative similarities between the noise and the square of the transconductance.
In comparison with the more traditional d.c. transport measurements we believe that noise
measurements can provide additional information about the dynamical properties of QPCs.

1. Introduction:

For several years problems related to electron transport through ballistic point contacts,
shown in figure 1, have drawn a lot of attention from the solid state physics community.
The most interesting feature of the so-called quantum point contacts (QPCs) is the non-
linear character of their current—voltage (I-V') characteristics. This non-linearity is usually
explained within the framework of conductance guantization [1, 2, 3, 4] (for a review see
[5] and references therein). According to this concept the QPC forms a quantum channel
that behaves as a wave guide for elecirons, the number of transverse modes being dependent
both on gate voltage V, and source—drain voltage Vig. Consequently, non-linear features
of the -V, carve should be observed at driving voltages of the order of the mean spacing
between the quantized transverse energy levels; ie. for eVyy = Egp/N (here Ep is the
Fermi energy and N the number of modes). For typical parameters this corresponds to
Vg & 1 mV. Nevertheless, non-linear struciure in the response has been observed [6, 7]
at much lower voltages of order 0.01 mV. One could vnderstand such a behaviour by
taking into account a resonant structure in the conduction steps (see e.g. [8, 9, 10, 11])
due to scatiering cansed by abrupt variations in shape at the entrance and exit regions of
the QPC. An explanation appropriate for QPCs with a smooth geomety, which probably
corresponds to the experimental situation [6, 7], has been proposed in [12]. It is based
upon the concept of coherent mode mixing inside the contact; an electron wave entering the
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contact is coherently split between different transverse modes due to a scattering potential,
During propagation along the channel the electron wave packet becomes deformed because
the phase shifts gained by different transverse mode components are not the same. As a
result, an interference structere in the current appears because of mode mixing after a second
scattering event. Such a behaviour is very similar to the well known electrostatic Aharonov—
Bohm effect (see e.g. [5]). It is very important to notice that the described model does not
rely upon a short-range scattering potential which can produce strong backscattering. On
the contrary, the effect persists even if the scattering potential is soft, which is the case in
ballistic structures [13, 14].

gate electrode [ gate electrode

n-doped AlGaAs impurities

undoped spacer layer, AlGaAs 2DEG | €

PC
GaAs L

Figure 1. A quantum point contact is defined at the interface between the undoped AlGaAs
spacer layer and GaAs by the split gate confinement technique. Noise is caused by the motion
of impurities in the n-doped AiGaAs layer.

The model introduced in [12] explains the qualitative structure in the measured I—
V curves as well as their main quantitative characteristics. We believe that the above-
mentioned mechanism is responsible for the features observed in [6] and [7].

Along with a non-linear oscillating contribution to the -V curve of QPCs, a telegraph-
like low-frequency noise {15] has also been found. This kind of oscillating noise (as function
of gate and source—drain voltages) is to be distinguished from the type of noise in [23] and
[24]. In their case, noise is due to switching of the number of current carrying modes which
in turn is caused by fluctuations of the Fermi level. Qur aim here is to analyse the former
type of oscillating noise in a QPC within the framework of the mode! introduced in [12].
Comparison of results on telegraph noise with available experimental data could support (or
falsify) the above-mentioned model.

The paper is organized as follows. In section 2 the model employed will be discussed.
General analytical expressions for telegraph-like noise, as well as its relation to current,
will be given in section 3. In the last section 4 we discuss main results and present our
conclusions.

2. Model

Following [12], we model our QPC—formed in a 2D electron gas by gate electrodes—as an
adiabatically smooth channel [16] connecting two equilibrium reservoirs. We assume that
the QPC contains two scatterers. The origin of these scattering centres, both taken to be
static for the moment, can be the soft potentials forrmed by one or several of the impurity
atoms in the n-doped AlGaAs layer (see figure 1) that are normally present because of
doping. The gate electrodes are assumed to provide a hard-wall confining potential in the
transverse direction, hence creating a channe]! whose width is furthermore assumed to vary



Fmpurity noise in a quantum point contact - 7241

smoothly in the longitudinal direction. The WKB approximation for the electron wave
function is therefore applicable. One finds [16]

¥(x,y,E) = ;afx;b(x, ¥, E) (1
where |
XEx, ¥, E) = /kn (B, F00)/ kny(E, X)r.x (¥) €Xp [i fq; dx’ kn.{l(E;x')] 2)
kn(E, x) = kg+/& — £0,1(x) — ug(x) — vs(x). | (3)

Here E = ¢Ep is the total energy of the electron—EF being the Fermi energy in the leads

at zero bias voltage, Vyz = O—while kz = (2mEF/hz)” ? is the Fermi wave vector and
kn.)(E, x) the longitudinal wave vector along the channel. The transverse part of the wave
function, ¢, (y). depends parametrically on the longitudinal coordinate x; the comresponding
‘transverse’ energy eigenvalue is g, 4 and is measured in units of the Fermi energy Er.
Hence

an \? ; ..
= (i) B

where d{(x) is the coordinate-dependent width of the channel. The distribution of the
electrostatic potential caused by the applied source—drain voltage is affected by all charges
within the contact region; it is described by the dimensionless parameters v = eV, /2Eg
and s(x} which appear in the combination vs(x} in (3). In order to match the Fermi levels
in the leads we must obviously require that s(dco) = 1. The distribution along the
channel for the gate voltage modelled by the dimensionless parameter « is described by the
dimensionless function g(x). The plus sign (+) in (2) comresponds to transmission from
the left to the right reservoir, while a minus sign (—) corresponds to transmission in the
opposite direction. Without Iosing anything essential, we simplify our model by letting
g(x) =1, v =0 in expression (3) for the WKB wave functions.

The interference effects of inrerest to us are due to coherent scattering by two scatterers.
The first one splits an incoming mode into several other modes which then propagate
independently. Making use of the unitarity of the scattering matrix one can show [12, 17]
that such a splitting does not change the current at all in the absence of backscattering (if
the potential is soft enough). The unitarity condition is simply a statement of conservation
of probability: total incoming flux must equal total outgoing flux. The second scatterer
makes an additional coherent mode mixing that leads to an interference pattern in the total
transmission (or reflection) coefficient, and in the current.

Let us assume that an electron enters from the left, is transmitted after scattering against
the left imnpurity (L), propagates through the contact, passes the right impurity (R) after a
second scattering event, and finally escapes the channel on the right-hand side. To describe
the coherent splitting of the WKB wave function (1) we introduce—following [12]—for
each scatterer a unitary (2N x 2N) scattering matrix,

A [ P A
§= ( ;— o ) (5)

v )=5(ut)
ou =5 I 6
( v, v ©

such that
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The (N x N') submatrices 7~ and % define the reflection from, and the transmission through,
the scatterer of the components of the incident wave function. The plus/minus component
lIJi refers to the incident wave coming from the left/right reservoir, while the plus/minus
component W refers to the outgoing wave from the scatterer propagating to the right/left.
The electron propagation right/left between the scattering events is described by diagonal
phase gain matrices U,

U3 = 8;; exp [io;(E)] 7
where

o, (E) = f " Qx4 (B, ) ®)

is the phase gained by the jth mode between scatterers R and L.
The general expression for the current is [12]

2e “ "
== T+
I(Vi) = - de dnp(EYTr [T“‘(E) T (E)] ©
dnp(E) = np(E — Ep — eViy/2) — np(E — Ep + eV /2}

where Sng is the difference between the Fermi-Dirac distribution functions in the reservoirs,
and T+(E) the total transfer matrix (for transfer from left to right) for a particle with energy
E, so that W}, = T+W. To lowest order, T+ = ffU*{}. Making use of (5) and (7), one
can show {12] that the total current can be expressed as a sum of two parts: I = ILgap =+ Jine.
The first part

Id:ag = — f dE rSm:(E) Z j(E)L_u(E) (10

originates from diagonal parts of the matrices R = ffi‘}f' and [ = # tLT. The second
contribution,

. .
L=~ | AE snp(E) 32 Re (RiLy ¢%) (1)

J<k
where g, = o; — 0y, contains all interference effects. In the absence of backscattering (10)
reduces to the usual expression for the current through a ballistic constriction, which exhibits
the well known conductance quantization with gate voltage [1]. iy is the contribution from
interference between different modes. The expressions (10) and (11) that give the total
current were analysed in [12]. They are the starting points for calculating low-frequency
noise.

3. Low-frequency noise

3.1. General consideration

One can imagine several mechanisms which lead to low-frequency noise—external, such as
low-frequency fluctuations of gate and source—drain voltages, and internal, such as spatial
rearrangements of the scaftering potentials. In the present study we consider the latter
mechanism, which we believe to be the simplest one.

It is well known that there is some disorder in the vicinity of smali devices, even if they
are of high quality. In any disordered system defects with internal degrees of freedom are
present. Interactions with a thermal bath can induce transitions between the corresponding
quantum mechanical states (see [18] for a review). Usually, such defects switch between two
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states, leading to a telegraph-like noise pattern. Dynamical defects of this kind have been
observed in metal point contacts and tunnel junctions by several authors (see, e.g. [25-30]
and have been called ‘elementary fluctuators’, or EFs for brevity. Typically, a Lorentzian
frequency dependence of noise is observed if one EF is responsible for the fluctuations,
while in the case of several activated EFs usually a 1/f dependence (often calied flicker
noise) is found [24-30]. The number of activated EFs increases with temperature, so cne
can actually in some cases see the crossover from Lorentzian to 1/f-like noise when the
temperature is raised [24]. In the present study we focus on noise from a single EF. Thus,
for our results to be applicable, bandwidth-limited noise should be observed.

The microscopic structure of the EFs is not completely clear. One of the possible
sources of two-state defects is disorder-induced soft atomic vibrations. For low excitation
energies the vibrations are sirongly anharmonic and can be described as an atom or group
of atoms moving in an effective double-well potential. Such entities are known as [31, 32]
two-level tunnelling systems (TLS). They are responsible for the low-temperature properties
of glassy materials. The generalization of the TLS modei for higher excitation energies has
been worked out in [33]. Dynamical defects produce elastic (or electric) fields, slowly
varying in time. Conduction electrons are then scattered by these fields. Another possible
origin of fluctuations in the scattering potential is electron hopping between adjacent sites in
the doped region of the device. The motion of the EFs leads to a variation of the scattering
potential in the 2DEG region. |

A quantitative theory is not yet completely worked out for either of the two mechanisms
mentioned above. In order to describe the main physical picture we use a simplified model:
Le. we agsume that one of the scatierers (the left one, say) will maintain its static character,
while the other one (right) is allowed to hop between two different spatial positions. The
hopping scatterer will from now on be denoted the elementary fluctuator (EF). Its spatial
position xz is a random quantxty, which we describe as

xp(f) = x% — 5&0). (12)

Here [ is the hopping distance; for simplicity, the transverse coordinate has been neglected,
leading to an effectively one-dimensional description. The random quantity £(#) is jumping
between the two values &1 at random times, thus descnbmg a telegraph-like process.

The hopping is induced by an interaction with a thermal bath. The transition rate ry
from the state £ = 41 to § = —1 and the reverse rate I'_ are determined by the nature
of hopping and by the interaction between the EF and the thermal bath.- From the detailed
balance principle we have

r /Ty =exp(~A/kpT) (13)

where T js the temperature, and A the energy difference between the states of the EF,
Consequently, at high enough temperatures (kzT 3> A) the hopping rates are almost equal,
while at low temperatures there will be a significant difference between the two, The
dependence of I' = T'y +T'_ on A and T is determined by the hopping mechanism (see the
discussion in [18] and [24]). If the transitions are due to quantum mechanical tunnellmg,
‘T & A* where k = 3 for EF-phonon interaction and k = 1 for EF-clectron interaction. If
transitions are induced by activation, on the other hand, T o exp(—W/ksr) whete W is
“some activation energy [18). We assume the EF to be unaffected by the applied source—drain
voltage as well as the gate voltage [19]. Thus our model does not apply to the mechanically
controllable break junctions studied in [21]. For normal semiconductor junctions though,
the electric fields generated by these voltages in a remote EF (see figure 1) are usually
much less than the EF’s internal field. Hence I' can be considered to be independent of
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these voItages {20]. We assume that the only effect of the hops made by the scatterer is a
variation in the phases, o, gained by conducting modes. As has been shown in [12] the
oscillating part of the cument is sensitive to the phase of the modes. Therefore, we expect
that the simple model we use contains the most important mechanism for the influence on
the current from the EF.

3.2, Analytical expression for noise intensity

Noise is usually characterized by the current-current correlation function
8(x) = (¢ + D), — ()} (14)

or by its Fourier transform S{w) with respect to time 7. The symbol {---}; means average
over time ¢ which is (under stationary conditions) just the same as an average over the
random process £(¢) (ergodicity). Strictly speaking, the current I is an operator, and
the procedure also has to include a quantum mechanical average. However, here we are
interested in long-time correlations while the so-called quantum noise [34]

(1@ + 0)i)g — Fe + 0 (T D)),

(subscript g stands for a quantum mechanical average) decays at very short times <.
Consequently, to study flicker noise one can replace current operators by their quantum
mechanical averages.

Because the diagonal part of the current is time independent, only the interference part
enters the expression for noise. Making use of equation (11) for Ly we obtam the following
form of the current—current correlation function;

S(r) = (f) f dE 8np(E) f dE'Sne(E") Y Mium(E, EN®jtim (15)
JtkdFEm
where

Mjiim = R(E)jL(E)gj R(E )i L(E Y

(elmm(f L EN o (T, E)) — (e it (s E')} (cit’jt(I.E))t_ (16)

Piktm =

Assuming that the longitudinal wave vector k;; varies slowly as a function of position xg
in the channel, one can approximate the phase as

ay(t, E) =~ o (E) + w;(E}(t)
w;(E) = kj (E, x%)1/2.

The superscript O indicates that the phase, (8), should be evaluated for x3. We then arrive
at the following approximate form of the function (16):

Djtim = OB ENg [k (B), wim(E"I7] (18)
where wy (E) = w;(E) — w;(E), and

G(x, y|r) = K(x, ylz) ~ K (x, y|oo)

K(x,ylt) = (eix§<r+r)+iy£(t)}t .

Note that the function K (x, it} is known [36] as the generating function for the random

process £(t). After a straightforward analysis, we get from equation (A7) (see appendix A)

41"+l"_ oFlel — _ sinxsiny
" cosh?(A/2ksT)

(17)

(19)

G(x, y|t) = —sinxsiny 20)
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Thus we find that the quantity G [wjk (E), w,,,,(E’)|z] in equation (18) can be factorized

into functions of E and E’. Furthermore, by their mere construction the matrices R and L
are Hermitian. Hence one can reduce the double sum as follows:

> sinwjk(E)R(E); 1 L(E)y;
s ,
=21 sinw(E) Im | Ru(B) Ly (E)e™® . e3))
J<k

Taking the Fourier transform with respect to v we find the noise spectrum to be a Lorentzian
since the current—current correlation function is exponentially decreasing in time.

Collecting the partial results above, we obtain a general expression for the noise of the
form '

S(w) = ———————L(w)A?
@) = o a2k .
1 T
L) = 7 [2+ w2
where )
A= 2{- dE $np(E) ) sinwj(E, x3) 2 Im [Rjyc(E)Lk j(E)ei‘Tfk(E)]_ (23)
. J<k

The expression (22) is a product of three factors. The first one, cosh™2(A [2ksT), makes
it clear that a telegraph-like noise can only appear if the EF can hop due to interactions
with a thermal bath. The typical excitation energy is of order kgT". If A >» kgT the EF
cannot be excited and will remain in its lowest-energy state forever. The second factor is
a simple Lorentzian function with characteristic width T'. The third factor in (22), A2, is
equal to (I, — I-)%/4 where superscripts == correspond to the values =1 of the random
process £(¢). As a result, equation (22) can be expressed as

S(®) :F,;:I;‘ [

- o) Clw). ‘ (24)

For the particular case when there are only two possible values of the interference curcent
one can derive this expression directly from the Master equation without using the generating
function. We still keep the above derivation though because it allows for a straightforward
generalization to the case of several EFs.

The quantity A contains the same parameters as expression (11) for the interference
part of the current. It is therefore of interest to see whether or not the quantity A can be
related to measured (average} curreni—voltage characteristics. This is the subject of the next
section.

3.3. Noise and interference current

Since the interference part of the current (11) is fluctvating, the average current will be the
most easily measured quantity. Provided R;;Ly; is real, we only have to calculate Re{efi@)
to find this average. Using the approximation for the phase (17), and the definition of
K(x, y|t) in (19), we may express the average of the phase factor in terms of X as follows:

(0), = ek (D), = &K (wye, 0I0). 25)
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From (A6) (see appendix A) and (13} we then immediately obtain the average current,

2
@y = o [ 4E ne(E) 3 2RiLiy (E) [cos(ef (B cos(uye(E)

jek
+ tanh(A /2ks T) sin(o7, (E)) sin(wj (E)) . (26)
Besides the current often the transconductance, here defined as

Lt (1))
av,

is measured. Only the interference part of the current has been included because far from

the conduction steps the diagonal part is practically independent of the gate voltage.
Further, from now on we restrict curselves to only consider straight channels. This

simplification allows for a simple estimate of the phase differences wy,(Ef) and O’J%(EF)

ey = Ky (u = 0)/ke),

Wik ~ 1 s k2 kel /2
( ajok )(u) = (1 -+ 2§j‘||§k,{|) (k.5 kk.]l)( kel ) < (9( ke L ) (28)

provided we are far from the thresholds where the number of conducting modes changes.
Remember that L = x;, —x is the distance between the scatterers and I the hopping distance
of the EF. The period of oscillation in noise as a function of the dimensionless gate voltage
u will be

G(Vour V) = (27)

27 kik
2 NS 29
kel ey — ki

Since typically kgl < 1, we find it sufficient to expand all results to lowest order in
wye. This upper bound of kgl calls for a digression. The typical displacement ! of an
EF in the course of thermal-bath-induced fluctuations depends strongly on the microscopic
nature of the EF. If the EF is produced by structural disorder in the vicinity of the channel,
one can expect [ to be of the order of an interatomic distance, and kel < [. If the EF
originates from electron hopping in the doped region of the structure, it is reasonable to
expect that [ is of the order of the average distance between the impurities in the doped
region. In this case the product kgl can be as large as 1-10 depending on size and shape of
the structure. Another point to note is that a mechanical displacement of the scatterer is not
the only reason for variations in the scattering phase kgi. Rearrangements in an extended
defect containing several atoms can also cause variations in the scattering phase of order
unity. Our phenomenological model does not allow for explicit calculations of the scattering
phase, so we keep the simplest description of the mechanical displacement of the scatierer
and consider the product gl to be of order one.

du

3.3.1. Two propagating modes. To compare noise and current, we first consider a simple
case for which we do not explicitly have to calculate RjL;: when the QPC only allows
for two propagating modes, noise can for low temperatures (7 € A /&g, ) and low
source—drain voltages V;; be directly related to the current,

(LD} = Imax c0s [05(Ep) — wiz(E)] (30
ImkFL[kp kF] .0

sino(E) 31
kl.“ kl|| 12( ) ( )
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o w?,(Ep) sin® [O'IZ(EF)] :
S@) = cosh®(A /2 T) (@) . (2)
Tnax = 280 Vi R1z2(EF) L1 (Ex) (33)

where gq = 2¢%/h is the unit of conductance. I, is the maximum value of the mterference
current with respect to variations in external parameters.
“Qualitative conclusions about expressions (30)-(33) will be drawn in section 4.

3.3.2. Mony propagating modes. In the case when there are more than two modes
propagating through the quantum point contact, one has to solve for the product

Rjp (E)Li;(E) of the scattering rates between different modes. Generally the solution to the
scattering problem is rather involved and since there are many unknown parameters we will
in this section only make estimates of the order of magnitude of these scattering rates. It
will turn out that the largest contribution, within our approximations, comes from scattering
between the propagating modes with the two lowest mode indices. Thus we can actually
apply the two-mode results (30)-(33) in section (3.3.1) even when there are more than two
current carrying modes. However, the approximations adopted below are less accurate the
more modes-there are, see numerical estimates in table 1.

Table 1. Square of intermode scattering rates, Tj(Er), between modes J and & at the Fermi
energy and for zero gate voitage. The parameter N is the total number of propagating modes
and the channel width was chosen so as to have the contact biased at the centre of a plateau in
conductance quantization. To have a nonzero value of T we must have odd values of j £ £,
it is clearly seen that increasing the total number of modes & andfor decreasing kpa and kgb
makes the differences smaller.

N  kea  keb
5 10 20

Mede & Tje(Er)/ TialEr)

1

2 x 1002
8 x 10-3
3 % 1075
4% 1077
8 x 10-12

20 40 I

3x 103
9% 1075
2% 107
I1x107U
2 x 1072
1

6x 1072
1 x 101
3 x 1072
4% 1072
1x10°2
g x 1073
I x10-3
[ %104
9x 1074
4% 108
2x 1073

Q\UI-P-S“DOD‘QO\U\-IEWNM#MJ&NNM-P-U\-&-WE\J

=
—
=3
]
S
[P R - R I~ NV R N PO X R N T N S S AT T S e
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The quantity Rjz(E)L;(E) is the product of the two scattering probabilities for
scattering from mode j to k by the left scatterer and the analogous probability—but time
reversed and with exchanged mode indices—for the right scatterer. Since we have restricted
our channel to be straight, R;z(E) = L (E). To simplify the calculations we assume that
the only screening of the impurity potential that exists originates from electrons within the
gate electrode. This screening can approximately be described by a proper image charge.
If the impurity and image charges are separated from the 2DEG by distances « and b,
respectively, the effective potential is

1 1
Vir) = A — - 34
(r)y =4 I:\/ P +ad) P+ bz):l (34)

where r is the in-plane coordinate, while Ag contains physical constants,
The scattering probability can be calculated from the Golden Rule,

2
Lij(E) = — KFIV(x, NI 8(Es — E) (35)

where i and f denote the initial and final states.

For r > max (a, b), we find that V(r) o< 1/r3. The potential (34) is hence short ranged,
and its influence may be ignored for large . In the opposite limit of small values of r,
we get V(r) = Ag(l/a — 1/B)[1 — (r/c)?], where ¢ = ab/\/(a? -+ ab + b%)/2. The typical
range of V{r) is c.

Due to the presence of the spacer layer (see figure 1), the width of the channel will
most likely be much smaller than the distances  and 4. In this case the impurity potential
can be considered as being constant in the transverse direction. The matrix element in (35)
will then simply be proportional to the overlap between the transverse parts of the wave
functions. This overlap is non-zero only between modes of different parity (i.e. when k= j
is an odd number). The matrix element can consequently be written as

JQ(E) + k23
72—k

where Q(n) = [1 — (—1)*1/2 equals zero for even n and one for odd n. The function
Vi(g) is the Fourier transform of the potential along the channel. To evaluate Vp(g) we
must solve the integral

oo —~igx -] —qt
e e
= 2e¢79¢¢ f dr
0

sz +a? «/t(t +2a

\/;-—;e f ds——,: if 2g2 > 1. 37

Here we have introduced branch cuts at —ico — —ia and at ia — ioo and transformed
the integral by means of complex contour integration. The distances @ and b are large due
to the presumed low intermode scattering; in the last step we thus are allowed to assume
kpa, keb >> 1. A lower bound of these parameters is given by kgc, where c is the spacer
layer thickness (see figure 1). It can be estimated from [5] and [23] kg = 1.6 x 10° cm™
and ¢ = 42 nm implies kgc = 6.7. The reason for having a spacer in the structure (see
figure 1) is in fact to reduce impurity scattering so the scattering must be very soft. Indeed,
in [7] the off-diagonal contribution (in our madel due to intermode scattering) to the current
was found to be a fraction ©(1073) of the diagonal part of the current.

4
[{&lV (x, MINE= ;Q(J' +&) 1V e,y — Kz (36)
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q -~ \
N - /\\
K );;
N o // ;’::;\\\\//
ARV

(kg /ke) +(ky/ ke) = BB,

Figure 2, Illustration (taken from [22] and [23]} of possible scattering events for the case of
four propagating modes far from threshold where the number of propagating modes changes.
The signs of ki, & and g are chosen for convenience and clarity. Becanse of the exponential
dependence on gj¢ and g) b and the high value of kra and kra, scattering case 1 gives a much
lasger contribution to Tj; than cases 2, 3 and 4. (See also table 1.)

The energy-dependent quantity determining the strength of the different intermode
scattering rates will be :

= Tu(E). (39

J'SZ(k)+kSZ(f):|4 e _ew] w2
TRl NTE  Jab | kiake

Of crucial imaportance here is the exponential dependence on the longitudinal component
of the transferred momentum, gy = |ku.| — &;.j|- This result agrees with findings by Price
[35]. Along with the fact that kpa, kpb >3 1, it implies that the major contribution comes
from the scattering event with the lowest value of g. I the total number of propagating
modes is not very high, we see from figure 2 that the scattering from mode number one
into mode number two gives the lowest value of gy. As an approximation we may put all
other scattering amplitudes to zero. Hence, even in the more general case of more than two
modes we should observe a similar relation between noise and current as in the two-mode
case (see section 3.3.1) above. For completeness, numerical values of T (Er)/ Ti2(EF) are
given in table 1 for different values of (f, &) and for a particular set of physical parameters.

RuLly(EYx (j + k) [

4. Discussion and conclusions

Let us start the discussion by reviewing the results for a QPC with two current carrying
modes, equations (30)-(33). In this case we predict that the period of noise oscillations as
a function of external parameters should be half the period of oscillations in the current.
Verification of this statement is important in order to confirm (or falsify) our model.



7250 J P Hessling et al

In the general case when there is no restriction on the number of conducting modes we
conclude the following.

{i) By qualitatively estimating the intermode scattering rates we found that the major
contribution to noise and interference current comes from scattering between modes one
and two. However, decreasing the distance to the impurities and/or increasing the number
of conducting modes makes this conclusion less accurate. The many-mode solution could
thus be mapped on the result for two conducting modes. In particular, noise and square of
transconductance should oscillate with the same frequency and phase, as functions of gate
voltage.

(ii) The dependence on temperature of the telegraph noise is determined by the factor

cosh™(A/ksT).

Comparing with experiments one can determine the interlevel spacing, A, of the elementary
fluctuator (EF). This would help to identify the nature of the EF.

(iii) The width, ", of the Lorentzian that describes the frequency dependence of the

- noise is also a function of temperature. In fact it reflects the most important dynamical
property of the EF because the temperature dependence is different for quantum mechanical
tunnelling and activation {see section 3.1).

(iv} The main feature of our model is that varations in external parameters (such as
Ve, Viu) are assumed to only affect the phase functions o;(E) (see equation (8)). The
oscillatory behaviour of the noise and the square of derivatives of the current (with respect
to any external parameter) should then be qualitatively similar.

(v) The assumed nature of the EF causes the additional phase w;; (x I) due to its
fluctuating position to be smail. To lowest order, noise will have a quadratic dependence
on the hopping distance [. Thus if there are several EFs, the EF with the largest hopping
distance will give the largest contribution to noise.

Finally, we would Like to stress that, in spite of the idealized character of the adopted
model, our conclusions seem rather general. Indeed, any kind of time fluctuation in the
scattering phase shift by any scatterer should lead to a similar behaviour. In that case the
parameter w;; will have a different meaning and could in principle be of order unity.
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Appendix. Derivation of the generating function K (z, y|T)

In order to evaluate K{x, y|r) let us analyse the Master equation for the conditional
probability Q(£', t'|&, ) of finding the value £ = £’ at the time # under the condition
E(#) = &. It reads (cf. [36])

3 ’,], , ’ ’ ’
_QGE?EIZ—§P+Q&HqHEJ)+gp_Qﬁqqﬂat)=0 A

with initial condition Q(&’, z|&, t) =3y . Taking into account the sum rule

QL IE, )+ Q118 =1
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we find the following solution to (Al):
1

0F".lE. 0 =52 [F —§ T =T +Fe T Poey s —Th g + Ty — F_)]. (A2)

The ekpectation valees of all odd and even powers of £(¢) and its products can now
readily be evaluated (since £ is only allowed to assume the values £1). One finds

x> (@) =1 ,
E*EEPFN = EO) = T —T4)/T : (A3)
EXFUNEPH)) = (EEED) = C(IY —1)).

The function C|(t’ — ¢|} defined in equation (A3) can be calculated wsing its definition,
which can be re-expressed as

CW,ty= Y EE0GE I DPE, 1. ' (A9)

§.8/=41 .
P(£, 1) is here the one-event probability of finding the value £ at time . We fin

C@',t) = Flz. [(1"+ -y +4r+r,e"”"""]. (AS)

E:-cpanding the exponential in the generating function (19) and making use of the expectation
values (A3), together with {AS) we obtain
(T =T AT T oy
T2 -+ T e 7

K(x,y|t) =cosxcosy —sinxsiny [

T, —I. .. ,
- i—t—l_-,L sin(x + y). (A6)

For the difference function G(x, y|7) defined in (19) we get

. 4. T sinxsiny
G(x,y|t) = —sinxsiny—— —e~ 1" =
(x, yIt) Y2 cosh®(A /2kpT)

e T (AT)

Here we have used the relation (13) between ", and T'_.
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